Bosch FX, Lorincz A, Munoz N, Meijer CJ, Shah KV. The causal relation between human papillomavirus and cervical cancer. J Clin Pathol. 2002;55(4):244–65. https://doi.org/10.1136/jcp.55.4.244.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stanley MA, Sterling JC. Host responses to infection with human papillomavirus. Curr Probl Dermatol. 2014;45:58–74. https://doi.org/10.1159/000355964.
Article
PubMed
Google Scholar
Kyrgiou M, Mitra A, Moscicki AB. Does the vaginal microbiota plays a role in the development of cervical cancer? Transl Res. 2016;179:168–82.
Article
Google Scholar
Mitra A, MacIntyre DA, Lee YS, Smith A, Marchesi JR, Lehne B, et al. Cervical intraepithelial neoplasia disease progression is associated with increased vaginal microbiome diversity. Sci Rep. 2015;5(1):16865. https://doi.org/10.1038/srep16865.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mitra A, MacIntyre DA, Marchesi JR, Lee YS, Bennett PR, Kyrgiou M. The vaginal microbiota, human papillomavirus infection and cervical intraepithelial neoplasia: what do we know and where are we going next? Microbiome. 2016;4(1):58. https://doi.org/10.1186/s40168-016-0203-0.
Article
PubMed
PubMed Central
Google Scholar
Mitra A, MacIntyre DA, Ntritsos G, Smith A, Tsilidis KK, Marchesi JR, et al. The vaginal microbiota associates with the regression of untreated cervical intraepithelial neoplasia 2 lesions. Nat Commun. 2020;11(1):1999. https://doi.org/10.1038/s41467-020-15856-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Usyk M, Zolnik CP, Castle PE, Porras C, Herrero R, Gradissimo A, et al. Cervicovaginal microbiome and natural history of HPV in a longitudinal study. PLoS Pathog. 2020;16(3):e1008376. https://doi.org/10.1371/journal.ppat.1008376.
Article
CAS
PubMed
PubMed Central
Google Scholar
Laniewski P, Barnes D, Goulder A, Cui H, Roe DJ, Chase DM, et al. Linking cervicovaginal immune signatures, HPV and microbiota composition in cervical carcinogenesis in non-Hispanic and Hispanic women. Sci Rep. 2018;8(1):7593. https://doi.org/10.1038/s41598-018-25879-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Laniewski P, Cui H, Roe DJ, Barnes D, Goulder A, Monk BJ, et al. Features of the cervicovaginal microenvironment drive cancer biomarker signatures in patients across cervical carcinogenesis. Sci Rep. 2019;9(1):7333. https://doi.org/10.1038/s41598-019-43849-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Valenti P, Rosa L, Capobianco D, Lepanto MS, Schiavi E, Cutone A, et al. Role of lactobacilli and lactoferrin in the mucosal cervicovaginal defense. Front Immunol. 2018;9:376. https://doi.org/10.3389/fimmu.2018.00376.
Article
CAS
PubMed
PubMed Central
Google Scholar
van de Wijgert J, Verwijs MC, Gill AC, Borgdorff H, van der Veer C, Mayaud P. Pathobionts in the vaginal microbiota: individual participant data meta-analysis of three sequencing studies. Front Cell Infect Microbiol. 2020;10:129. https://doi.org/10.3389/fcimb.2020.00129.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kwasniewski W, Wolun-Cholewa M, Kotarski J, Warchol W, Kuzma D, Kwasniewska A, et al. Microbiota dysbiosis is associated with HPV-induced cervical carcinogenesis. Oncol Lett. 2018;16(6):7035–47. https://doi.org/10.3892/ol.2018.9509.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee JE, Lee S, Lee H, Song YM, Lee K, Han MJ, et al. Association of the vaginal microbiota with human papillomavirus infection in a Korean twin cohort. PLoS One. 2013;8(5):e63514. https://doi.org/10.1371/journal.pone.0063514.
Article
PubMed
PubMed Central
Google Scholar
Oh HY, Kim BS, Seo SS, Kong JS, Lee JK, Park SY, et al. The association of uterine cervical microbiota with an increased risk for cervical intraepithelial neoplasia in Korea. Clin Microbiol Infect. 2015;21(7):674 e1–9.
Article
Google Scholar
Piyathilake CJ, Ollberding NJ, Kumar R, Macaluso M, Alvarez RD, Morrow CD. Cervical microbiota associated with risk of higher grade cervical intraepithelial neoplasia in women infected with high-risk human papillomaviruses. Cancer Prev Res. 2016;9(5):357–66.
Zhang C, Liu Y, Gao W, Pan Y, Gao Y, Shen J, et al. The direct and indirect association of cervical microbiota with the risk of cervical intraepithelial neoplasia. Cancer Med. 2018;7(5):2172–9. https://doi.org/10.1002/cam4.1471.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brotman RM, Shardell MD, Gajer P, Tracy JK, Zenilman JM, Ravel J, et al. Interplay between the temporal dynamics of the vaginal microbiota and human papillomavirus detection. J Infect Dis. 2014;210:1723–33.
Article
CAS
Google Scholar
Mhatre M, McAndrew T, Carpenter C, Burk RD, Einstein MH, Herold BC. Cervical intraepithelial neoplasia is associated with genital tract mucosal inflammation. Sex Transm Dis. 2012;39(8):591–7. https://doi.org/10.1097/OLQ.0b013e318255aeef.
Article
CAS
PubMed
PubMed Central
Google Scholar
Scott ME, Shvetsov YB, Thompson PJ, Hernandez BY, Zhu X, Wilkens LR, et al. Cervical cytokines and clearance of incident human papillomavirus infection: Hawaii HPV Cohort Study. Int J Cancer. 2013;133(5):1187–96. https://doi.org/10.1002/ijc.28119.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ilhan ZE, Laniewski P, Thomas N, Roe DJ, Chase DM, Herbst-Kralovetz MM. Deciphering the complex interplay between microbiota, HPV, inflammation and cancer through cervicovaginal metabolic profiling. EBioMedicine. 2019;44:675–90. https://doi.org/10.1016/j.ebiom.2019.04.028.
Article
PubMed
PubMed Central
Google Scholar
Scott ME, Ma Y, Kuzmich L, Moscicki AB. Diminished IFN-gamma and IL-10 and elevated Foxp3 mRNA expression in the cervix are associated with CIN 2 or 3. Int J Cancer. 2009;124(6):1379–83. https://doi.org/10.1002/ijc.24117.
Article
CAS
PubMed
PubMed Central
Google Scholar
Valore EV, Park CH, Quayle AJ, Wiles KR, McCray PB Jr, Ganz T. Human beta-defensin-1: an antimicrobial peptide of urogenital tissues. J Clin Invest. 1998;101(8):1633–42. https://doi.org/10.1172/JCI1861.
Article
CAS
PubMed
PubMed Central
Google Scholar
Itaoka N, Nagamatsu T, Schust DJ, Ichikawa M, Sayama S, Iwasawa-Kawai Y, et al. Cervical expression of elafin and SLPI in pregnancy and their association with preterm labor. Am J Reprod Immunol. 2015;73(6):536–44. https://doi.org/10.1111/aji.12354.
Article
CAS
PubMed
Google Scholar
Segat L, Zupin L, Moura RR, Coelho AV, Chagas BS, de Freitas AC, et al. DEFB1 polymorphisms are involved in susceptibility to human papillomavirus infection in Brazilian gynaecological patients. Mem Inst Oswaldo Cruz. 2014;109(7):918–22. https://doi.org/10.1590/0074-0276140220.
Article
PubMed
PubMed Central
Google Scholar
Hoffmann M, Quabius ES, Tribius S, Hebebrand L, Gorogh T, Halec G, et al. Human papillomavirus infection in head and neck cancer: the role of the secretory leukocyte protease inhibitor. Oncol Rep. 2013;29(5):1962–8. https://doi.org/10.3892/or.2013.2327.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sahin E, Madendag Y, Sahin ME, Madendag IC, Acmaz G, Karakukcu C, et al. Cervical local immune response for high-risk human papillomavirus infection: involvement with cervical mucus SLPI proteins. Cancer Contr. 2018;25(1):1073274818798598. https://doi.org/10.1177/1073274818798598.
Article
Google Scholar
Rein DT, Breidenbach M, Nettelbeck DM, Kawakami Y, Siegal GP, Huh WK, et al. Evaluation of tissue-specific promoters in carcinomas of the cervix uteri. J Gene Med. 2004;6(11):1281–9. https://doi.org/10.1002/jgm.606.
Article
CAS
PubMed
Google Scholar
Papoutsis D, Rodolakis A, Mesogitis S, Sotiropoulou M, Antsaklis A. Regeneration of uterine cervix at 6 months after large loop excision of the transformation zone for cervical intraepithelial neoplasia. BJOG. 2012;119(6):678–84. https://doi.org/10.1111/j.1471-0528.2012.03275.x.
Article
CAS
PubMed
Google Scholar
Founta C, Arbyn M, Valasoulis G, Kyrgiou M, Tsili A, Martin-Hirsch P, et al. Proportion of excision and cervical healing after large loop excision of the transformation zone for cervical intraepithelial neoplasia. BJOG. 2010;117(12):1468–74.
Article
CAS
Google Scholar
Kyrgiou M, Valasoulis G, Stasinou SM, Founta C, Athanasiou A, Bennett P, et al. Proportion of cervical excision for cervical intraepithelial neoplasia as a predictor of pregnancy outcomes. Int J Gynaecol Obstet. 2015;128(2):141–7. https://doi.org/10.1016/j.ijgo.2014.07.038.
Article
PubMed
Google Scholar
Kindinger LM, MacIntyre DA, Lee YS, Marchesi JR, Smith A, McDonald JA, et al. Relationship between vaginal microbial dysbiosis, inflammation, and pregnancy outcomes in cervical cerclage. Sci Transl Med. 2016;8(350):350ra102.
Article
Google Scholar
Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73(16):5261–7. https://doi.org/10.1128/AEM.00062-07.
Article
CAS
PubMed
PubMed Central
Google Scholar
Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26(19):2460–1. https://doi.org/10.1093/bioinformatics/btq461.
Article
CAS
PubMed
Google Scholar
Fettweis JM, Serrano MG, Sheth NU, Mayer CM, Glascock AL, Brooks JP, et al. Species-level classification of the vaginal microbiome. BMC Genomics. 2012;13(Suppl 8):S17.
Article
Google Scholar
Marks MA, Eby Y, Howard R, Gravitt PE. Comparison of normalization methods for measuring immune markers in cervical secretion specimens. J Immunol Methods. 2012;382(1-2):211–5. https://doi.org/10.1016/j.jim.2012.05.012.
Article
CAS
PubMed
Google Scholar
Parks DH, Beiko RG. Identifying biologically relevant differences between metagenomic communities. Bioinformatics. 2010;26(6):715–21. https://doi.org/10.1093/bioinformatics/btq041.
Article
CAS
PubMed
Google Scholar
Ravel J, Gajer P, Abdo Z, Schneider GM, Koenig SS, McCulle SL, et al. Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci U S A. 2011;108(Suppl 1):4680–7. https://doi.org/10.1073/pnas.1002611107.
Article
PubMed
Google Scholar
Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12(6):R60. https://doi.org/10.1186/gb-2011-12-6-r60.
Article
PubMed
PubMed Central
Google Scholar
Kyrgiou M, Athanasiou A, Kalliala IEJ, Paraskevaidi M, Mitra A, Martin-Hirsch PP, et al. Obstetric outcomes after conservative treatment for cervical intraepithelial lesions and early invasive disease. Cochrane Database Syst Rev. 2017;11:CD012847. https://doi.org/10.1002/14651858.CD012847.
Article
PubMed
Google Scholar
Kyrgiou M, Athanasiou A, Paraskevaidi M, Mitra A, Kalliala I, Martin-Hirsch P, et al. Adverse obstetric outcomes after local treatment for cervical preinvasive and early invasive disease according to cone depth: systematic review and meta-analysis. BMJ. 2016;354:i3633.
Article
Google Scholar
Ang C, Mukhopadhyay A, Burnley C, Faulkner K, Cross P, Martin-Hirsch P, et al. Histological recurrence and depth of loop treatment of the cervix in women of reproductive age: incomplete excision versus adverse pregnancy outcome. BJOG. 2011;118(6):685–92. https://doi.org/10.1111/j.1471-0528.2011.02929.x.
Article
CAS
PubMed
Google Scholar
Audirac-Chalifour A, Torres-Poveda K, Bahena-Roman M, Tellez-Sosa J, Martinez-Barnetche J, Cortina-Ceballos B, et al. Cervical microbiome and cytokine profile at various stages of cervical cancer: a pilot study. PLoS One. 2016;11(4):e0153274. https://doi.org/10.1371/journal.pone.0153274.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang H, Lu J, Lu Y, Cai Q, Liu H, Xu C. Cervical microbiome is altered in cervical intraepithelial neoplasia after loop electrosurgical excision procedure in China. Sci Rep. 2018;8(1):4923. https://doi.org/10.1038/s41598-018-23389-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wiik J, Sengpiel V, Kyrgiou M, Nilsson S, Mitra A, Tanbo T, et al. Cervical microbiota in women with cervical intra-epithelial neoplasia, prior to and after local excisional treatment, a Norwegian cohort study. BMC Womens Health. 2019;19(1):30. https://doi.org/10.1186/s12905-019-0727-0.
Article
PubMed
PubMed Central
Google Scholar
Brotman RM, Shardell MD, Gajer P, Fadrosh D, Chang K, Silver MI, et al. Association between the vaginal microbiota, menopause status, and signs of vulvovaginal atrophy. Menopause. 2014;21(5):450–8. https://doi.org/10.1097/GME.0b013e3182a4690b.
Article
PubMed
PubMed Central
Google Scholar
Haggerty CL, Totten PA, Ferris M, Martin DH, Hoferka S, Astete SG, et al. Clinical characteristics of bacterial vaginosis among women testing positive for fastidious bacteria. Sex Transm Infect. 2009;85(4):242–8. https://doi.org/10.1136/sti.2008.032821.
Article
CAS
PubMed
Google Scholar
Di Paola M, Sani C, Clemente AM, Iossa A, Perissi E, Castronovo G, et al. Characterization of cervico-vaginal microbiota in women developing persistent high-risk human papillomavirus infection. Sci Rep. 2017;7(1):10200. https://doi.org/10.1038/s41598-017-09842-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Harwich MD Jr, Serrano MG, Fettweis JM, Alves JM, Reimers MA, Vaginal Microbiome C, et al. Genomic sequence analysis and characterization of Sneathia amnii sp. nov. BMC Genomics. 2012;13(Suppl 8):S4.
Article
Google Scholar
Atassi F, Brassart D, Grob P, Graf F, Servin AL. Lactobacillus strains isolated from the vaginal microbiota of healthy women inhibit Prevotella bivia and Gardnerella vaginalis in coculture and cell culture. FEMS Immunol Med Microbiol. 2006;48(3):424–32. https://doi.org/10.1111/j.1574-695X.2006.00162.x.
Article
CAS
PubMed
Google Scholar
Wang KD, Xu DJ, Wang BY, Yan DH, Lv Z, Su JR. Inhibitory effect of vaginal Lactobacillus supernatants on cervical cancer cells. Probiotics Antimicrob Proteins. 2018;10(2):236–42. https://doi.org/10.1007/s12602-017-9339-x.
Article
PubMed
Google Scholar
Anton L, Sierra LJ, DeVine A, Barila G, Heiser L, Brown AG, et al. Common Ccervicovaginal microbial supernatants alter cervical epithelial function: mechanisms by which Lactobacillus crispatus contributes to cervical health. Front Microbiol. 2018;9:2181. https://doi.org/10.3389/fmicb.2018.02181.
Article
PubMed
PubMed Central
Google Scholar
Muzny CA, Laniewski P, Schwebke JR, Herbst-Kralovetz MM. Host-vaginal microbiota interactions in the pathogenesis of bacterial vaginosis. Curr Opin Infect Dis. 2020;33(1):59–65. https://doi.org/10.1097/QCO.0000000000000620.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shannon B, Yi TJ, Perusini S, Gajer P, Ma B, Humphrys MS, et al. Association of HPV infection and clearance with cervicovaginal immunology and the vaginal microbiota. Mucosal Immunol. 2017;10(5):1310–9. https://doi.org/10.1038/mi.2016.129.
Article
CAS
PubMed
PubMed Central
Google Scholar
Norenhag J, Du J, Olovsson M, Verstraelen H, Engstrand L, Brusselaers N. The vaginal microbiota, human papillomavirus and cervical dysplasia: a systematic review and network meta-analysis. BJOG. 2019;127(2):171–80. https://doi.org/10.1111/1471-0528.15854.
Article
PubMed
Google Scholar
Soutter WP, Moss B, Perryman K, Kyrgiou M, Papakonstantinou K, Ghaem-Maghami S. Long-term compliance with follow-up after treatment for cervical intra-epithelial neoplasia. Acta Obstet Gynecol Scand. 2012;91(9):1103–8. https://doi.org/10.1111/j.1600-0412.2012.01477.x.
Article
PubMed
Google Scholar
Arbyn M, Redman CWE, Verdoodt F, Kyrgiou M, Tzafetas M, Ghaem-Maghami S, et al. Incomplete excision of cervical precancer as a predictor of treatment failure: a systematic review and meta-analysis. Lancet Oncol. 2017;18(12):1665–79. https://doi.org/10.1016/S1470-2045(17)30700-3.
Article
PubMed
Google Scholar
Kalliala I, Athanasiou A, Veroniki AA, Salanti G, Efthimiou O, Raftis N, et al. Incidence and mortality from cervical cancer and other malignancies after treatment of cervical intraepithelial neoplasia: a systematic review and meta-analysis of the literature. Ann Oncol. 2020;31(2):213–27. https://doi.org/10.1016/j.annonc.2019.11.004.
Article
CAS
PubMed
Google Scholar
Brotman RM, He X, Gajer P, Fadrosh D, Sharma E, Mongodin EF, et al. Association between cigarette smoking and the vaginal microbiota: a pilot study. BMC Infect Dis. 2014;14(1):471. https://doi.org/10.1186/1471-2334-14-471.
Article
PubMed
PubMed Central
Google Scholar
Brotman RM, Ghanem KG, Klebanoff MA, Taha TE, Scharfstein DO, Zenilman JM. The effect of vaginal douching cessation on bacterial vaginosis: a pilot study. Am J Obstet Gynecol. 2008;198(6):628 e1–7.
Article
Google Scholar
Vodstrcil LA, Hocking JS, Law M, Walker S, Tabrizi SN, Fairley CK, et al. Hormonal contraception is associated with a reduced risk of bacterial vaginosis: a systematic review and meta-analysis. PLoS One. 2013;8(9):e73055. https://doi.org/10.1371/journal.pone.0073055.
Article
CAS
PubMed
PubMed Central
Google Scholar
Si J, You HJ, Yu J, Sung J, Ko G. Prevotella as a hub for vaginal microbiota under the influence of host genetics and their association with obesity. Cell Host Microbe. 2017;21(1):97–105. https://doi.org/10.1016/j.chom.2016.11.010.
Article
CAS
PubMed
Google Scholar
Giraldo PC, Babula O, Goncalves AK, Linhares IM, Amaral RL, Ledger WJ, et al. Mannose-binding lectin gene polymorphism, vulvovaginal candidiasis, and bacterial vaginosis. Obstet Gynecol. 2007;109(5):1123–8. https://doi.org/10.1097/01.AOG.0000260386.17555.a5.
Article
CAS
PubMed
Google Scholar
De Seta F, Maso G, Piccoli M, Bianchini E, Crovella S, De Santo D, et al. The role of mannose-binding lectin gene polymorphisms in women with recurrent bacterial vaginosis. Am J Obstet Gynecol. 2007;197(6):613 e1–3.
Article
Google Scholar
Cauci S, Di Santolo M, Casabellata G, Ryckman K, Williams SM, Guaschino S. Association of interleukin-1beta and interleukin-1 receptor antagonist polymorphisms with bacterial vaginosis in non-pregnant Italian women. Mol Hum Reprod. 2007;13(4):243–50. https://doi.org/10.1093/molehr/gam002.
Article
CAS
PubMed
Google Scholar
Fernandes JV, Cobucci RN, Andrade VS, et al. Link between chronic inflammation and human papillomavirus-induced carcinogenesis (Review). Oncol Lett. 2015;9(3):1015–26. https://doi.org/10.3892/ol.2015.2884.
Article
PubMed
PubMed Central
Google Scholar
Strander B, Andersson-Ellstrom A, Milsom I, Sparen P. Long term risk of invasive cancer after treatment for cervical intraepithelial neoplasia grade 3: population based cohort study. BMJ. 2007;335(7629):1077. https://doi.org/10.1136/bmj.39363.471806.BE.
Article
PubMed
PubMed Central
Google Scholar
Strander B, Hallgren J, Sparen P. Effect of ageing on cervical or vaginal cancer in Swedish women previously treated for cervical intraepithelial neoplasia grade 3: population based cohort study of long term incidence and mortality. BMJ. 2014;348(jan14 1):f7361. https://doi.org/10.1136/bmj.f7361.
Article
PubMed
PubMed Central
Google Scholar
Lee SJ, Cho YS, Cho MC, Shim JH, Lee KA, Ko KK, et al. Both E6 and E7 oncoproteins of human papillomavirus 16 inhibit IL-18-induced IFN-gamma production in human peripheral blood mononuclear and NK cells. J Immunol. 2001;167(1):497–504. https://doi.org/10.4049/jimmunol.167.1.497.
Article
CAS
PubMed
Google Scholar
Saftlas AF, Spracklen CN, Ryckman KK, Stockdale CK, Penrose K, Ault K, et al. Influence of a loop electrosurgical excision procedure (LEEP) on levels of cytokines in cervical secretions. J Reprod Immunol. 2015;109:74–83. https://doi.org/10.1016/j.jri.2015.01.002.
Article
CAS
PubMed
Google Scholar
Xiao L, Crabb DM, Dai Y, Chen Y, Waites KB, Atkinson TP. Suppression of antimicrobial peptide expression by ureaplasma species. Infect Immun. 2014;82(4):1657–65. https://doi.org/10.1128/IAI.01231-13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pazgier M, Prahl A, Hoover DM, Lubkowski J. Studies of the biological properties of human beta-defensin 1. J Biol Chem. 2007;282(3):1819–29. https://doi.org/10.1074/jbc.M607210200.
Article
CAS
PubMed
Google Scholar
Helmig R, Uldbjerg N, Ohlsson K. Secretory leukocyte protease inhibitor in the cervical mucus and in the fetal membranes. Eur J Obstet Gynecol Reprod Biol. 1995;59(1):95–101. https://doi.org/10.1016/0028-2243(94)02023-8.
Article
CAS
PubMed
Google Scholar
Chong KT, Xiang L, Wang X, Jun EL, Xi LF, Schweinfurth JM. High level expression of human epithelial beta-defensins (hBD-1, 2 and 3) in papillomavirus induced lesions. Virol J. 2006;3(1):75. https://doi.org/10.1186/1743-422X-3-75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Erhart W, Alkasi O, Brunke G, Wegener F, Maass N, Arnold N, et al. Induction of human beta-defensins and psoriasin in vulvovaginal human papillomavirus-associated lesions. J Infect Dis. 2011;204(3):391–9. https://doi.org/10.1093/infdis/jir079.
Article
CAS
PubMed
Google Scholar
McNeely TB, Dealy M, Dripps DJ, Orenstein JM, Eisenberg SP, Wahl SM. Secretory leukocyte protease inhibitor: a human saliva protein exhibiting anti-human immunodeficiency virus 1 activity in vitro. J Clin Invest. 1995;96(1):456–64. https://doi.org/10.1172/JCI118056.
Article
CAS
PubMed
PubMed Central
Google Scholar
John M, Keller MJ, Fam EH, Cheshenko N, Hogarty K, Kasowitz A, et al. Cervicovaginal secretions contribute to innate resistance to herpes simplex virus infection. J Infect Dis. 2005;192(10):1731–40. https://doi.org/10.1086/497168.
Article
CAS
PubMed
Google Scholar
Arbyn M, Kyrgiou M, Simoens C, Raifu AO, Koliopoulos G, Martin-Hirsch P, et al. Perinatal mortality and other severe adverse pregnancy outcomes associated with treatment of cervical intraepithelial neoplasia: meta-analysis. BMJ. 2008;337(sep18 1):a1284. https://doi.org/10.1136/bmj.a1284.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kyrgiou M, Koliopoulos G, Martin-Hirsch P, Arbyn M, Prendiville W, Paraskevaidis E. Obstetric outcomes after conservative treatment for intraepithelial or early invasive cervical lesions: systematic review and meta-analysis. Lancet. 2006;367(9509):489–98. https://doi.org/10.1016/S0140-6736(06)68181-6.
Article
CAS
PubMed
Google Scholar
Kyrgiou M, Mitra A, Arbyn M, Stasinou SM, Martin-Hirsch P, Bennett P, et al. Fertility and early pregnancy outcomes after treatment for cervical intraepithelial neoplasia: systematic review and meta-analysis. BMJ. 2014;349(oct28 1):g6192. https://doi.org/10.1136/bmj.g6192.
Article
PubMed
PubMed Central
Google Scholar
Rebolj M, Rimmer J, Denton K, Tidy J, Mathews C, Ellis K, et al. Primary cervical screening with high risk human papillomavirus testing: observational study. BMJ. 2019;364:l240. https://doi.org/10.1136/bmj.l240.
Article
PubMed
PubMed Central
Google Scholar
Lev-Sagie A, Goldman-Wohl D, Cohen Y, Dori-Bachash M, Leshem A, Mor U, et al. Vaginal microbiome transplantation in women with intractable bacterial vaginosis. Nat Med. 2019;25:1500–4.
Article
CAS
Google Scholar
Mitra A, MacIntyre DA, Paraskevaidi M, Moscicki AB, Mahajan V, Smith A, et al. The vaginal microbiota and innate immunity after local excisional treatment for cervical intraepithelial neoplasia: European Nucleotide Archive’s (ENA) Sequence Read Archive (SRA). Accession number: PRJEB40437. https://www.ebi.ac.uk/ena/browser/view/PRJEB40437; 2021.